- 3.11. Включите подачу масла на насосной станции. По мере затягивания гайки давление на манометре будет повышаться. Но, благодаря предохранительному клапану на распределителе маслостанции, оно не превысит заданное значение.
- 3.12. Для откручивания (ослабления) гайки надо вынуть приводной квадрат из отверстия храпового колеса гайковерта и вставить его с противоположной стороны.

4. ХРАНЕНИЕ

Условия хранения для упакованного гайковерта должны соответствовать условиям хранения 3 по ГОСТ 15150-69. В помещении, где хранится гайковерт, не должно быть среды вызывающей коррозию материалов, из которых он изготовлен.

5. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 5.1. Поставщик гарантирует надежную работу изделия в течение 12 месяцев со дня его продажи при условии соблюдения потребителем правил эксплуатации, изложенных в настоящем РЭ.
- 5.2. Претензии принимаются только при наличии настоящего руководства по эксплуатации с отметкой о дате продажи и штампом организации-продавца.
- 5.3. Гарантийные обязательства не распространяются на:
- естественный износ резинотехнических изделий.
- изделия с механическими повреждениями, вызванными перегрузкой и неправильной эксплуатацией.
- изделия со следами самостоятельных ремонтных работ.
- 5.4. Рекламации предъявляются по адресам:

ООО "ПКФ МК", 198332, г. Санкт-Петербург, Кубинская, д.73, корп.1 тел./факс: +7 (812) 303-82-86. +7 (812) 252-75-93

Штамп магазина:	Дата продажи:
m raiviir iviarasviira.	дата продажи:

Гайковерт гидравлический торцевой

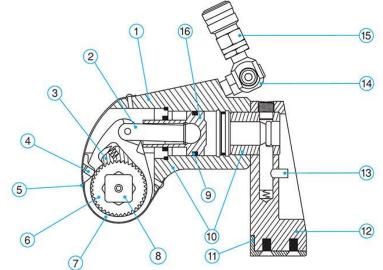
TU-60 INSTAN

Руководство по эксплуатации ИС 425.60.000РЭ

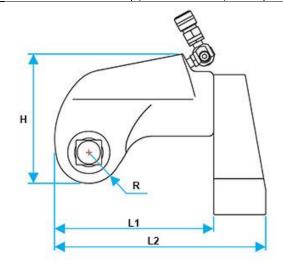
Санкт-Петербург

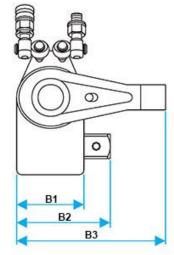
1. НАЗНАЧЕНИЕ

Торцевой гидравлический гайковерт предназначен для работ по затяжке и ослаблению резьбовых соединений. Используется при работе с фланцевыми соединениями, при работе в ограниченном пространстве. Гайковертам TU-60 соответствует линейка сменных торцевых головок с квадратом 2.5" под гайки от 65мм до 165мм.


2. ПОДГОТОВКА К РАБОТЕ

- 2.1. Визуально проверьте детали гайковерта на отсутствие повреждений.
- 2.2. Убедитесь, что все гидравлическое оборудование, используемое с гайковертом, рассчитано на давление 70 МПа.
- 2.3. При подключении и отключении быстроразъемных соединений (БРС), убедитесь с помощью манометра, что в системе нет давления. БРС и другие соединения должны быть чистыми и надежно затянутыми.


3. РАБОТА


- 3.1. Вставьте приводной квадрат 8 в отверстие храпового колеса 6.
- 3.2. Установите торцевую головку требуемого размера на приводной квадрат гайковерта.
- 3.3. Подключите рукава маслостанции к гайковерту через быстроразъемные соединения (БРС) 15.
- 3.4. На гайковерте предусмотрена таблица соотношения давления и крутящего момента 5. Найдите требуемый крутящий момент (Нм) и напротив него будет указано соответствующее ему гидравлическое давление (бар).
- 3.5. Запустите насосную станцию и включите подачу масла на гайковерт с помощью пульта управления. Приводной квадрат повернется на определенный угол и остановится. Контролируя давление по манометру, продолжайте удерживать кнопку пульта в нажатом состоянии, пока давление не перестанет расти. Не превышайте давление 700бар (70МПа)!!!
- 3.6. Если достигнутое давление превышает требуемое значение, то необходимо немного выкрутить регулировочный винт предохранительного клапана маслостанции и повторить действия п.3.5.
- 3.7. Если достигнутое давление меньше требуемого значения, то необходимо немного закрутить регулировочный винт предохранительного клапана маслостанции и повторить действия п.3.5.
- 3.8. После установки требуемого давления, зафиксируйте регулировочный винт предохранительного клапана маслостанции.
- 3.9. Установите гайковерт на закручиваемую гайку.
- 3.10. Поверните реакционную опору гайковерта 12 так, чтобы она надежно упиралась в соседнюю гайку, шпильку или в корпусную деталь и не давала гайковерту прокручиваться вокруг своей оси (для снятия и поворота реакционной опоры нажмите кнопку 13).

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И РАЗМЕРЫ

1. Корпус	6. Храповое колесо	11. Защитная накладка реакционной опоры				
2. Шток	7. Приводной диск	12. Реакционная опора				
3. Толкатель храпового механизма	і х перекпючатель	13. Кнопка высвобождения реакционной опоры				
		14. Независимый шарнирный механизм БРС (360х360 град.), резьба NPT1/4"				
5. Таблица зависимости	10. Возможность использования без	15.Быстроразъемные соединения (БРС)				
крутящего момента от давления	реакционной опоры	16. Поршень				

Модель	Крутящий Модель момент, Нм		Повторяемость	Точность	Максимальное	Размер приводного	Вес, кг	Размеры, мм						
	min	max			рабочее давление	квадрата, мм		L1	L2	B1	B2	B3	Н	R
TU-60	8053	80537	100%	+/- 3%	700 кг/см2 (70 МПа)	2,5"	59,8	390,7	518,2	167,1	225,6	363	292,1	78,7